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Abstract

Ensembles are a widely used and effective technique in madbarning—their success is com-
monly attributed to the degree of disagreement, or ‘ditgrsiithin the ensemble. For ensembles
where the individual estimators output crisp class lalikls,'diversity’ is not well understood and
remains an open research issue. For ensembles of regressimators, the diversity can be exactly
formulated in terms of the covariance between individutihestor outputs, and the optimum level
is expressed in terms of l@as-variance-covarianc&rade-off. Despite this, most approaches to
learning ensembles use heuristics to encourage the rightelef diversity. In this work we show
how to explicitly control diversity through the error fuimm. The first contribution of this paper is
to show thabyy taking the combination mechanism for the ensemble irtowatt we can derive an
error function for each individual that balances ensemlietsity with individual accuracyWe
show the relationship between this error function and astiexj algorithm callechegative corre-
lation learning which uses a heuristic penalty term added to the mean sjear@ function. It is
demonstrated that these methods control the bias-varanaiance trade-off systematically, and
can be utilised with any estimator capable of minimising adratic error function, for example
MLPs, or RBF networks. As a second contribution, we derivériatsupper bound on the coef-
ficient of the penalty term, which holds for any estimatort tten be cast in a generalised linear
regression framework, with mild assumptions on the bagsistfans. Finally we present the re-
sults of an empirical study, showing significant improvetsesver simple ensemble learning, and
finding that this technique is competitive with a variety oétimods, including boosting, bagging,
mixtures of experts, and Gaussian processes, on a numleesksf t

Keywords: ensemble, diversity, regression estimators, neural m&sybessian matrix, negative
correlation learning

1. Introduction

The last decade has seen a frenzy of work in so-callsgmble learning systenhese are groups
of machine learning systems where each learner provides an estimate gétaviaiable; these
estimates are combined in some fashion, hopefully reducing the generalisatiortompared to
a single learner. The target can be categorical (classification ens@mbtmtinuous (regression
ensembles). The multiple estimates are integrated via a combination function, chymmagarity
voting for classification and dinear combinationfor regression. It is well appreciated in both
cases that the individual estimators should exhibit different patternemdrglisation—the very
simple intuitive explanation is that a million identical estimators are obviously no lettea single
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estimator of the same form. Much research has gone into how to encouisge thn “diversity”"—
most commonly manipulating the training data, providing each learner with aaitfeubset of
patterns or features (see Brown et al. (2005a) for a recent QuiMeg main point to note here is that
when our estimators output crisp class labels, there is no agreed defifidioarsity, and it remains
an open research question (Kuncheva and Whitaker (2003)). ©héepr is somewhat easier if we
have estimators that give posterior probabilities, in which case the effestimator correlations
on classification error rate has been investigated by Tumer and Gh@&$) @éd Fumera and Roli
(2003), though there remain several open questions on this topic.

A commonly overlooked point for regression ensembles is that this “diy&izan be explic-
itly quantified and measured. Thés-variance-covariancdecomposition from Ueda and Nakano
(1996) breaks the mean squared error (MSE) into three componerits.stpaply, whereas in a sin-
gle regression estimator we have the well known bias-variamoevaytrade-off, in an ensemble
of regressors we have the bias-variance-covarittmee-waytrade-off. The optimum “diversity” is
that which optimally balances the components to reduce the overall MSE. lartlule we focus
on negative correlation (NC) learninga successful neural network ensemble learning technique
developed in the evolutionary computation literature (Liu (1998)). In a statidtiamework, we
show that NC uses a penalty coefficientexplicitly alter the emphasis on the variance and co-
variance portions of the MSE. Setting a zero coefficient corresponidsiépendently training the
estimators; a higher coefficient introduces more emphasis on covaréantat a particular value it
corresponds to treating the entire ensemble as a single learning unit. Thiexiglait management
of the ensemble diversity. We will describe how the ensemble error gtacharbe broken into a
number of individually understandable components, and that NC exploitethisnd smoothly be-
tween a group of independent learners and a single large learnémgfihe optimal poinbetween
the twa We will prove an upper bound on the penalty coefficient, provide gaielam how to set it
optimally, and show empirical support that this guidance is useful. The &@dwork isapplicable
to any nonlinear regression estimatorinimising the MSE; we show examples using multi-layer
perceptrons and radial basis function networks as the base estimators.

The structure of this article is as follows. We begin in Section 2 with a summaryecdirth
derlying theory of regression ensemble learning, describing why theésts e trade-off between
ensemble diversity and individual estimator accuracy. We then consi&ercition 3 how we might
derive an error function that is capable of optimising this tradeegffflicitly. We do this and note
that it can be shown as equivalent to an existing heuristic techniteggtive correlation (NC)
learning We continue in Section 4 with an introduction to NC learning, summarising thengssu
tions and properties as published in the original work. Here we provitiiat&al interpretation of
NC, and derive a strict upper bound on its penalty coefficient—we emibyricaidate this bound
in Sections 5 and 6. Finally in Section 7 we summarise the implications of this work ioaal b
context.

2. Ensemble Learning for Regression

In this section we review the bias-variance decomposition (Geman et aR)j12&ing it as a
vehicle to introduce our notation; we then show how this decomposition natuninds to a
bias-variance-covariancdecomposition (Ueda and Nakano (1996)) when using an ensemble of
regression estimators.
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2.1 The Bias-Variance Decomposition

We have a data set of input vectors and output scatats,(X1,t1), ..., (Xn, tn) }, with each element
drawn from a random variabl& defined over an unknown distributig(x,t). It should be noted
that for brevity, and without loss of generality, we have assumed a neigsedezero in the data.
The learning problem is to use the gdb approximate the correct mapping from input to output.
For this purpose we use a parameterized estimbtevhose set of parametevs determine how
well it approximates the mapping. We would like to find the set of parameténsit minimise the
expected mean squared error,

e(f) = [ (10xw) ~0%p(x.)d(x.1). ®

Unfortunately we do not have access to the true distribuipnt), so we approximate this
integral with a summation over the data get

=z

o)~ <5 (Fomw) )2 (Xntn) €2 %)

1

Zle=

n

We do not necessarily want a set of parametethat give us zero error op this is because
is only asamplefrom the true distribution, and if we turve precisely taz then the estimatof may
not perform well on future data (we overfitted). However, if we do tooke w just enough then
we may again not perform well in the future (we underfitted). This is expliédiynulated in the
bias-variancedecomposition (Geman et al. (1992)). Note that from this point forwarglaice of
the integral notation in Equation (1), we use the shorthand expectatioatopef- }; additionally
we will omit the input and parameter vectors, so where it is unambiguousadhsfe (x; w), we
write simply f. The bias-variance decomposition is

E{(f-1)?% = (E{f}-)?+E{(f-E{f})?}
= biag(f)?+ variance f). (3)

The decomposition is a property of tlygeneralisationerror; these two components have to
be balanced against each other for best performance. Now let us entagininstead of a single
estimatorf, we have a collection of thenfy, ..., fi, eachf; has its own parameter vecta, and
M is the total number of estimators. We then train each individuséparately, using Equation (2)
as the error function; once this is accomplished, the outputs of the indisidtecombinedo give
the ensemble outpubr any new datapoint. The simplest possible combination mechanism is to
take a uniformly weighted average, so the output of the ensemble is

M
f(X;Wi,...,Wy) = %Zlfi()(;wi)' 4)

The ensembld can obviously be seen as an estimator in its own right; it will therefore haiasa b
variance decomposition; However it transpires that, for this class of estintatan be extended to
a bias-varianceovariancedecomposition.

1. In the case of a non-zero noise compongein,the decomposition would be replaced by its expected Vaiug},
and a constant (irreducible) tero? would be added, representing the variance of the noise.
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2.2 The Bias-Variance-Covariance Decomposition

Treating the ensemble as a single learning unit, its bias-variance decompoaititse formulated
as

E{(f-1)?} = (E{f}-t°+E{(f-E{f})?}
— bias(f)?+ variance f). (5)

We will now consider how the bias-variance decomposition for an enserableecextended (Ueda
and Nakano (1996Y).From this point forward, it should be noted that the expectation operator is
subtly different to that in the decomposition for a single estimator. We redefineandom variable
Z as a seZ = (Z,...,2Zn), so theith estimator is trained with a training sgtdrawn from its own
random variableZ;. It should be noted tha; potentially may be identical for all or not. If the
training data is identical for two machineand j, it does not imply that the expected valuegf; }
andE{f;} are equal, since other differences may be present between machimeg i.e. in the
training procedures, or the models. Finally, we note that although the desitiop presented
below does hold for non-uniformly weighted ensembles, we restrict cailysis to the uniform
case, as it corresponds to the simple average combination techniqueonsmdmly in practice. To
aid our exposition now, we define three concepts. The first concbissthe averaged bias of the
ensemble members,

bias = %ZE{f}—t (6)

The second igar, the averaged variance of the ensemble members,

— _ ; 2
var = MzE{ ~E{fi})?}. Y
The third iscovar, the averaged covariance of the ensemble members,
1
covar = ———— E{(fi—E{f —E{f; (8)
=) > g, FL i~ B E(iD)
We then have
E{(f-t)?} = Wzas2+%w+ (1—&)covan (9)

What does this decomposition tell us? It illustrates that in addition to the biasarahee of

the individual estimators, the generalisation error of an ensemble alsadtepa thecovariance

between the individuals. This raises the interesting issue of why we sheeitdrain ensemble
members separately; why shouldn’t we try to find some way to capture #et effthe covariance
in the error function? Given the decomposition (9), it is not immediately obwichest form this

should take—this will be our next topic for consideration.

2. ltis interesting to note that this was the first appearance of the desitiopanly for the ML literature—in fact an
equivalent decomposition can be found in Markowitz (1952), whichimstsumental for modern financial portfolio
theory, and subsequently won the 1990 Nobel Prize for Economics.
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3. How Can We Optimise Diversity with an Error Function?

For a single regression estimator, generalisation error is determined by\aayvias-variance
trade-off; for an ensemble of regression estimators, the ‘diversityeigssimply ahree-waybias-
varianceeovariancetrade-off. We know how to quantify diversity, but we have not yetsidered
how to achieve it and balance it against individual accuracy—the furdtal issue of ensemble
learning. The decompositions we have considered so far consist ofdts@yerall possible data
setsof a fixed size—we require a computable approximation to these in order to miramiseor
function on a limited data set. It turns out that another decomposition in the literatgnificantly
more well-known, provides the missing link. We will review this decomposition igscelation
to the ones we have already considered, then show how we can use ihtartrensemble whilst
controlling the bias-variance-covariance trade-off.

3.1 The Ambiguity Decompositon

Krogh and Vedelshy (1995) showed tlwita single arbitrary datapoint, the quadratic error of the
ensemble estimator is guaranteed to be less than or equal to the weightadexgeadratic error
of the component estimators

(fens— Z c(f z Gi(fi— fens . (10)

wheret is the target value of an arbitrary datapoiftc = 1, ¢i > 0, andfensis the convex com-
bination of theM component estimatorkns= z{\"zlci fi. Preceding the bias-variance-covariance
decomposition, this was a very encouraging result for ensemble respapwiding a very simple
expression for the effect of error correlations in an ensemble. Tbendggosition is made up of
two terms. The firsty; ci( i —t)z, is the weighted average error of the individuals. The second,
vici(fi — feng? is referred to as thémbiguity measuring the amount of variability among the en-
semble member answers for this particutart) pair. The trade-off between these two determines
how well the ensemble performs at this datapoint.

We have now seen two decompositions, Equation (9) and Equation (30gssing the effect
of correlations on ensemble error in two different ways. It is theresaresible to ask what the
relationship is between these two. The very similar structure of the two deaitiops (5) and (10)
is no coincidence; the proofs are virtually identical (Brown et al. (2)QS&e also Hansen (2000)
for an alternative treatment of this relationship. Assuming a uniform weightwegsubstitute the
right hand side of equation (10) into the left hand side of equation (@n@us

E( 3 (-2~ 3 (fi— )7} =bias + —var + (“%)m -

What portions of the bias-variance-covariance decomposition camdsi the Ambiguity term?
After some manipulations (see Appendix B for details) we can show

E( Y (fi-t)7)

H%Z(fi—f_)z} = Q-

bias +Q (12)

1 1
AT+ (1— M)Cova‘r] (13)
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whereQ is the interaction between the two sides,
1 i)
Q = var+MZ(E{fi}—E{f}) . (14)

Since theQ is present in both sides, when we combine them by subtracting the Ambiguitydn eq
tion (13), from the average MSE in equation (12), €b® cancel out, and we get the original bias-
variance-covariance decomposition back, as in the RHS of equatiani{iis)2 term is the average
variance of the estimators, plus the average squared deviation of thetatiqnes of the individuals
from the expectation of the ensemble. The fact thafitterm exists illustrates again that we cannot
simply maximise diversity without affecting the other parts of the error—inc&fihis interaction
guantifiesthe diversity trade-off for regression ensembles.

3.2 Using the Decompositions to Optimise Diversity

In a simple ensemble, the norm is to train learners separately#fthmember of the ensemble
would have the error functién L
g =5(fi-1)% (15)
In light of the decompositions we have seen, this is rather odd. Why wdwldnivant to directly
minimise thefull ensemble error?
1= -, 1 1. . 11 =5
ens= 5( =07 = G 3 5 -0 = 3 5= )" (16)

One easy answer to this is that we are adopting the “division of laboroagpr simplifying the
learning problem by breaking it int® smaller problems. However, according to Equation (11),
this error function should account for the bias, the variance, and dtiaso the covariance of
the ensemble. The point to remember is that these components shdoddabeedagainst each
another. Given the relationship shown in Equation (12) and Equation {8xould imagine a
“diversity-encouraging” error function of the form

qdiv:%Z%“i_t)Z_K%z%(fi—f_)Z. (17)

wherek is a scaling coefficient if0, 1] and allows us to vary the emphasis on the covariance com-
ponent. If we adopt a gradient descent procedure for training ot n
oV 1 —
o = (-0 -K(fi- 1. (18)
Whenk = 0 here, the gradient of our error function is proportional to the graditthe error of a

single learner, Equation (15). At the other extreme, whenl, thef; terms in Equation (18) cancel
out, and we have the gradient of the entire ensemble as a single unit,

oefv 1 1 0g

k=0 . T o= ylti-u] =g5 (19)
aqdi" 1 -~ O€ens

k=1, Fb = M{(f—t)} =50 (20)

3. As we will shortly be using a gradient descent procedure, by ciorewith the existing literature we multiply by
1

3
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By scaling thex term we would be able to vary smoothly between the two extremes of training
learners separately and training the ensemble as a single unit. Furthesigmdlyhese gradi-
ent components is provided in Appendix C. Using this scaling parameterspamds to explicitly
varying our emphasis on minimising the covariance term within the ensemble ME&Hcng it
against our emphasis on the bias and variance terms; hence we are explaitgingthe bias-
variance-covariance trade-off. The reader may now justifiably éxpeempirical investigation of
this error function; however, it conveniently transpires that an existingistic method in the liter-
ature (derived independently of the observations above) can bengbdye equivalent to this, and
has undergone extensive empirical tests showing its utility in a number of dembie theoret-
ical results we have derived in this section form a solid foundation to exghairsuccess of this
technique and link it to others in the literature. We will now consider tRisgative Correlation
Learning and show precisely how it relates to the derivations we have providediadbtion.

4. Negative Correlation Learning

Negative correlation (NC) learning (Liu (1998)) is a neural networkeenble learning technique
developed in the Evolutionary Computation literature. NC has shown a nurheengirical suc-
cesses and varied applications, including regression problems (Ydo(80@l)), classification
problems (McKay and Abbass (2001)), and time-series prediction (1988). It has consistently
demonstrated significant performance improvements over a simple ensestbl® sghowing very
competitive results with other techniques like mixtures of experts, baggidgy@wsting (Liu and
Yao (1997); McKay and Abbass (2001)). Though empirical suaskave been found with classi-
fication problems, it should be noted that the discussion here concdyrthemegression case.

4.1 The History

The fact that correlations between ensemble members affects perforimsmbeen known for a
long time. The first such reference to appear in the machine learning lierafisr Perrone (1993),
showing that we obtain % variance reduction if correlation between learners is zero. The first
reference in the literature to explicitly use this idea in a learning algorithm waerR@.996), who
trained networks sequentially using a penalty and scaling coeffiziadted to the error term,

o = Z(fi-17+Ap 1)

i1
p= (fi—t) Zl(fj —t). (22)
=

Attempting to extend this work, Liu and Yao (1997) trained the networks inllggrand used a
number of alternative penalty terfrimcluding one where theis replaced byf,

= (fi—t fi —t (23)
p ( 1;(1 )_

p= (fi—f)> (fi—f). (24)
JZ_' j

4. A companion work to this article, Brown et al. (2005b), gives a simitaiysis to penalty (23).
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The A parameter is problem-dependent, controlling the trade-off between thetiebjend penalty
terms during the gradient descent training procedure. Figure 1 sh&wasikhg backpropaga-
tion to update the network weights. A point to note here is that the authors delthéagradi-
ent using the assumptidithat the output of the ensemblg has constant value with respect to
fi” (Liu, 1998, p.29)., i.e. _

of

o 0. (25)

Using this, and the penalty Equation (24), the following gradient was elriv
1

& = S(Hi-0+A(fi—D)Y (f-f) (26)
2 J; ‘

0g 3

— = (fi—t)+AS(fj—1). (27)

of; ,; ‘

This is clearly an incorrect assumption—in the next section we will examine#éseméng behind it,

1. LetM be the final number of predictors required.
2. Take a training set= {(x1,t1), ..., (Xn,IN) }-

3. For each training pattern mfromn=1toN do:

(a) Calculatef = & 5 fi(xn)
(b) For each network from= 1 toM do:

e Perform asingleupdate for each weight in networki, using a
learning ratex (set as QL in our experiments), and:

T ow

Aw= —q [(fi(xn) “tn) = A(fi(xn) — )] - 2

4. Repeat from step 3 for a desired number of iterations.

For any new testing pattew) the ensemble output is given by:

F:%Zfi(x)

Figure 1: Pseudocode for negative correlation learning. Note the redaibetween tha term
and they term in Equation (30).

the implications it brings, and show how NC relates to the error decompositehave discussed
so far.
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4.2 A Theoretical Grounding for NC Learning

We would like to provide a rigorous foundation for the NC method, so it seemsilsle to observe
what happens when wemovethe assumption of constaht We now introduce a termin place of

A, to indicate when we perform the gradient calculatiamthout the assumptiorRe-deriving the
gradient, we have

1
@ = -0 =Ny

0g 1 —

5t = (i-v—y[20- (-1, (29)
We understand now thatin fact has the deterministic componeri2- ﬁ); to avoid confusion we
now refer to the parameters in the following context,

1
A=2y(1-5). (30)

wherey is still a problem-dependent scaling parameter. According to communicativimshe
original authors, the assumption was introduced for two reasons. Fiesthue the term(2 — %)
is a constant for any fixed ensemble of sideso can be precalculated for efficiency. Secondly, it

allowed the appealing property that whee- 1, the gradient in Equation (27) reduces

oe =
— = (F—O)+AS(fj—f
afi ( [ ) J;i( ] )
= (fi—)—A(fi— 1)
= (f-1)
VS a;;h% (31)
I
Here it can be seen that the identlgy;(fj — f_) =—(fi— f_) was used—the sum of deviations

around a mean is equal to zero. However, for this to hold we have toviwate the constant
assumption, as the sum of deviations around a constaot equal to zero. The reader will see an
immediate similarity in (31) to the observations we have made in the previous sextemifically
equations (18), (19), and (20). It emerges that by introducing thengsson, and subsequently
violating it, the NC gradient becomes proportional to the gradient of theefglity-encouraging”
error function (18) suggested earlier, where weAigeplace ofk,
aa _ aniv
f

6_fi = (fi—t)—-A(fi—f)=M- af

(32)

¢, From the observations we have made here, the connection between i &ias-Variance-
Covariance decomposition should be apparent. By introducing the assaon(@sy NC was in-
advertently provided with the missing gradient components that corredpotid variance and
covariance terms within the ensemble MSE. It can therefore be concludedi@hsucceeds be-
cause it trains the individual networks with error functions which moreetyoapproximate the
individual’s contribution to ensemble error, than that used by simple ensédeatoteng. Using the
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penalty coefficient, we then balance the trade-off between those indhadwrs and the ensemble
covariance. The relationship to the Ambiguity decomposition is made even nmaseap by noting
that the penalty term can be rearranged,

pi=(fi—1)5 (fi—f)=—(fi— )2 (33)

This leads us to a restatement of the NC error function,

& = 5(fi~t? (i~ )2 (34

Remembering the breakdown of the ensemble error from earlier,
eens—mlz é(fl_t) _é(fl—f) ) (35)

we see that the MSE of an ensemble can be decomposed into a weighted sumwmwiagienthe
it term is the backpropagation error function plus the NC-learning penatistiin, with they
parameter set at®. Here we note an important point, that there are additional effectdjthas
on Equation (35), that aneot containedn Equation (34). This is via thé term, which obviously
depends orf;, and can be found in each component of the summation in Equation (35efoe
simply settingy = 0.5 would mean we are not taking account of these effects, and settifigb al-
lows us to include them and find the appropriate problem-dependent bdtarest generalisation.
These observations are supported by further gradient analysis endlppC.

To summarise, in this section we have shown that there exist two quite difesrenfunctions,
which yield gradients (18) and (29) differing only in a scalar constanthiacorporates sufficient
information to allow the individual learners to optimise the bias-variancer@nee trade-off. We
now understand how NC balances accuracy against diversity; leoywge do not yet understand
what thecorrectbalance is, i.e. how do we set the penalty coefficient? We consider thikeprat
the next section.

4.3 Understanding and Defining Bounds on the Penalty Coefficient

The original work on NC (Liu and Yao (1997)) showed that @alue greater than zero can encour-
age a decrease in covariance, however it is also observed that toa kabe can cause a rapid
increase in the variance component, causing overall error to be higbeheoretical explanation
was given for this behaviour, and as such we do not yet have a ét¢argof the exact dynamics of
the parameter. It was stated that the boundssifould b0, 1], based on the following calculation,

)
a—?i = —t+>\§
= fi—t—A(fi—1)
= fi—t—A(fi—f)+At—At
= (A=N(fi—t)+A(f—t).

Itis stated:“the value of parametek lies inside the rangd < A < 1 so that both'1—A) andA have
non-negative values(Liu, 1998, p.29). In practice this bound seemed to be applicable; howeve
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the justification is questionable, and again here we see the assumption @intéris violated—if
constantf is assumed, then the deviations arodrésult cannot be used. In this section we provide
more concrete theoretical evidence for an upper bound.

The NC penalty term ‘warps’ the error landscape of the network, makmglttbal minimum
hopefully easier to locate. However, if the landscape is watpednuch, it could eliminate any
useful gradient information. This state is indicated by the positive-defeste(PD) of the Hessian
matrix. If the Hessian matrix, evaluated at a given point, is hon-PD, thenithiegeadient consists
of either a local maximum or a point of inflexion, and we have lost any ligefdient information
from our original objective function. We acknowledge an important ploéne, that the state of the
Hessian during training saymthingabout thegeneralisation error We simply note that if we have
a non-PD Hessian during the training, there will be no minimum to converga the datapoint
at which it was evaluatedn which case training can only cause weight divergence. We would
therefore like to know conditions under which the Hessian will be non-PD.

If the Hessian matrix is positive definite, then all elements on the leading diegi@npositive-
valued; therefore if any element on that diagonal is zero or less, the emdirixcannotbe positive
definite. Assume we have an estimator that is a linear combination of a numbemlofaar func-
tions g, so

K
fi= > Wit (36)
K=

Examples of estimators in this class are Multi-Layer Perceptrons using lingartowdes, Polyno-

mial Neural Networks, and Radial Basis Functions. Now, for an ariti@ssian diagonal element

corresponding to thgth weight in the output layer of thigh network,wg;, we can show (derivation

given in Appendix A) that

Pa _ [1—)\(1— i)} 2 (37)
aniZ N M (pql '

where in the case of RBF networkep(;,i2 is the squared output of thgth basis function in the

ith network. If this element, Equation (37), equates to zero or less, the elgggian matrixs

guaranteed to be non-positive definiéherefore we would like the following inequality to hold,

0 < [1—)\(1—$) @i
0 < %iz—h%i2(¥)

A (<) < ey

_ %
@i (M)
M
M—-1
Since the effect ofp, cancels ou?, we find that this inequality isndependenof all other
network parameters, so it é&sconstant for any ensemble architecture using estimators of this form

2
A<

A< (38)

5. We note that we assume a basis functpgin# 0, to avoid divide by zero problems—this does not always hold, for
example when using hyperbolic tangent activations; however heresueree either sigmoid activation or a Gaussian
RBF.
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and a simple average combination functidrhis defines an upper bound feiand, since we know
the relationship between the two strength parameters from Equation (363neso show a bound
fory,

M M?

Aupper= M_1 Yupper = m (39)
WhenA or vy is varied beyond these upper bounds, the Hessian matrix is guarantdsel to

non-positive definiteFigure 2 plotshypper and the equivalenyypper for different ensemble sizes.
We see that as the size increasg,per asymptotes to 1, ang,pper to 0.5. For larger ensembles,
e.g. M > 10, this therefore lends concrete theoretical evidence to Liu's prdposend ofA = 1.
However, for smalM, the bound shows values larger thag- 1 may still retain a positive definite
Hessian matrix.
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Figure 2: The Upper bound grandA.

Our bound was determined on the premise that the leading diagonal contaggatve el-
ements implies a non-PD Hessian matrix. However, it could easily be the caghdhaading
diagonal is all positive, yet the entire matrix is still non-PD. This implies that theeixneould be-
come non-PIbeforeour upper bound is reached. Our bound is therefore a consereatiyeand it
may be possible to define a tighter bound. The question of whether a tighted bauo be defined
can be phrased dére there any general conditions for the off-diagonal elements of thestda,
that will force non-positive definiteness, in spite of all leading diagonal etesnbeing positive?”
Any such analytical conditions based on the Hessian will almost certainlyplo¢-dependent—the
advantage of our bound is that it is a constant for a given ensemblendept only on the number
of ensemble members. However, the utility of the bound depends entirelywotidid it is—using
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a neural network ensemble it would be pointless if the weights divergedisagnly beforethe
bound is reached. To validate this hypothesis we now engage in empiritiadtes

5. Empirically Validating the Proposed Bound

The purpose of this section is to determine how useful our theoreticat bppad can be in practice.
We remind the reader again that our bound is not computed in refereneaecadjsation error, and
we now wish to evaluate whether it can be practically useful in this contexenWaryingy, if the
network weights diverge significantly before the upper bound is rea¢hen the bound is not tight
and therefore of little use. Alternatively, it could simply be that certain enkeuinfigurations
do not show any benefit from using NC, in which case i#elf is of no use, and neither is our
parameter bound. We now investigate these issues.

5.1 Data Sets

We use the Boston Housing data set, where the problem is to predict the rhedsaprice given
a number of demographic features. There are 506 examples, eacimicmnia input variables (12
continuous, 1 binary), and 1 continuous output variable in the range 0.t&B input variables
were linearly rescaled, independently of each other, to be in the f@rijeand the output variable
was linearly rescaled to-1, 1]. A five-fold cross validation procedure was used, so keeping 20% of
the data as a holdout set, and using the remaining 80% for training and validafiin the Boston
data set this equates to 304 for training, 101 for validation, and 101 fimded he validation data
was used to perform early stopping by the following procedure: train widtang the validation
error every 50 epochs; if the validation error has risen in compariso@@epochs ago, terminate
training and reset the weights to the best point within that 500 epoch wiratoawrésolution of 50
epochs) according to the validation data.

The second data set was generated (Friedman (1991)) by the function

2
h(x) = 10sin(Txyx2) + 20 (x - %) +10x4 + 5x5 41, (40)

wherex = [xi,..,X10] IS an input vector whose components are drawn uniformly at random from
[0,1], andn is a noise component drawn frol(0, 1), i.e. mean zero and varianced1 Totally
there are 10 continuous valued attributes, but only the first 5 are used fartbtion, leaving the
last 5 as irrelevant characteristics that the algorithm has to learn to igiMgaised a data set of
size 1000, using the same five-fold cross validation procedure astossabove.

The third data set used was thegP data, recently used in (Tino et al. (2004)). This is a highly
nonlinear pharmaceutical data set, where the task is to predipattigon coefficienbf a chemical
compound, allowing one to determine certain uptake properties of the moldtheedata set has
14 continuous input variables, and 1 continuous output variable in thyge fat.2,+9.9]. There
are 6912 examples, which we used in the same cross-validation proeedaiveve.

For all three data sets, each ensemble was evaluated over the 5 datatblmlen30 trials of
random weights, giving 150 trials for each run.
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5.2 When Does the NC Technique Work Well?

Empirical analyses of NC have been shown on several other occasidmms several other data sets
(Liu et al. (2000); Liu and Yao (1997); Brown (2004)). The pointlois section is to characterise
some general conditions of ensemble architecture under which NC seeantsé@d in comparison
to a simple ensemble.

We train several different ensemble architectures using a rangeaifies (at a resolution of
0.05), the optimuny value was located according to the validation data, and finally evaluated on
the testing data. This was compared to using 0, where it should be remembered tlyat 0
is exactly equivalent to simple ensemble learning, i.e. training each netwagendently of the
otherswithoutNC learning. We first varied the number of networks in the ensemble, udirgdca
individual network size of 6 hidden nodes. Figure 3 shows results oFtledman data, figure 4
for Boston, and figure 5 for LogP; 95% confidence intervals are inelicaVith the Friedman and
Boston data sets, a general trend that can be noted is that larger rgtatisgeseem to be made with
larger ensemble sizes.

0.038

— T T T T T T T T T T
— Simple ensemble — Simple ensemble
8l —6— NC (Optimal Gamma)| | —6— NC (Optimal Gamma)

0.036
0.034

0.032
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Number of Networks Number of Networks

Figure 3: Friedmany = O versus optimay, 6  Figure 4. Bostony = 0 versus optimay, 6 hid-
hidden nodes per network den nodes per network

However, with the LogP data, relative performance does not seem &asewith the size of the
ensemble. If we make the component networks much simpler, 2 hidden routefsgare 6, we see
the same recognisable trends as in the other data sets. The generateuteipported by previous
empirical work on NC, seems to be to use very simple networks—in this casamwsee that an
ensemble of 16 networks, each with 2 hidden nodes, has equalled tbenpemte of a similarly
sized ensemble, using 6 hidden nodes per network.

Figures 7 and 8 show the gains as we varydbmplexity(i.e. number of hidden nodes per net-
work) of the individual ensemble members. We can note here that the gairnuging NCdecreases
as we increase the complexity of the networks. Regarding again figure6 the&se results indi-
cate that NC is of most use when we have large ensembles of relatively toplexity ensemble
members. This is emphasized further looking at figure 10, where we damteasemble of 6 net-
works using 2 hidden nodes, and using NC, can equal the performétite same ensemble using
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far more complex networks. Additionally, in these situations, wipenset optimally, significantly
faster convergence and lower generalisation error for a fixed nuofilegrochs were observed.

5.3 How Tight is the Bound?

We now turn to examining the behaviour of theneralization erroras we movey toward its upper
bound. Figures 11, 13 and 15 show the performancgsshanged, with several different sizes of
ensemble—each network has fixed complexity at 6 hidden nodes. A distipetitern is observed:
a virtually monotonic decrease in error as we incrgage to a particular “threshold”, beyond which
the error rises rapidly. On closer examination of the networks trained witle thigihy values, it
was observed that the network weights had diverged to excessivggnalues. The point at which
divergence occurs seems to move downward as we increase the sigenstémble. Figures 12, 14
and 16 show the behaviour with a fixed ensemble $ire; 6, as we vary the individual complexity
between 2 and 12 hidden nodes. Here we see a distinction from the reayitggvensemble size:
the divergence point seems largely unaffected by the complexity of theretw

Using these results as a guide, we searched the raryg tie finer resolution of.01 to locate
the divergence point. Figure 18 shows this, illustrating that divergesems extremelynvariant
to the choice of data set. We superimpose the predicted upper bound tenthatcas the number
of networks increases, the divergence point and the upper bouhd&gmptote to &, confirming
that our bound is tight. We have also superimpoy‘sed%, corresponding to wheR = 1.
Zooming in on part of the plot allows us to see that dhe 1 original bound is obeyed in most
instances, but not all. We acknowledge of course thaeiaetlocation of the divergence point is
of little consequence; the real point we wish to locate isapgmumy value, and see if it provides
significant improvements relative to other ensemble techniques; we will exgie in the next
section.

In conclusion to the ‘upper bound’ issue, we note that we have proviusatetical evidence
that supports that = 1 bound in the case of lardé, but the bound remains loose for snidl] and
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A =1 (or equivalentlyy = %) seems to be a useful heuristic bound. A possible justification for

this is to remember that as we approachk: 1, we treat the ensemble more and more as a single
learning unit—beyond this we would be introducing a greater emphasis @riaoge than is in
the overall ensemble objective function; whether this bound can be stricthg@ remains an open
guestion.
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6. Further Empirical Comparisons

In this section we will compare the NC framework to other competitive ensempleaghes, using
MLPs as the base estimator. Additionally we will illustrate that the NC frameworkledsd general,
by using RBF regressors, and showing that very similar empirical pateenesge, obeying our
upper bound for thg parameter.

6.1 Comparing NC to Other Popular Ensemble Approaches

Performing valid empirical comparisons with existing works in the literature istarioaisly diffi-
cult task; slight differences in experimental setup can easily invalidatertloegure. In particular,
training/testing data must be exactly the same between two systems to be coriparedgP data
has been used in previous work (Tino et al. (2004)) by one of theruauthors—we obtained the
exact data split used in that work to test NC against their results. Of tHzeé&imples, 5530 were
used for training, 691 for validation and 691 for testing. We used 12 mksyeach with 6 hidden
nodes. Using the validation data, the optimye 0.5 was determined. Results in table 2 show how
NC compares with other state-of-the-art techniques; 95% confidencealstare indicated where
available. As an additional useful statistic, Tino et al. (2004) computedXNgImprovement over
Naive) value. This is the percentage improvement relative to a naivécfpedwith an MSE of
2.69) which predicts a constant for any input, equal to the mean target wvathe training data.
The best achieveable improvement in their experiments wa®4a, the Gaussian Process learner,
while here we see NC achieves.Z2%.

‘ System Testing MSE (conf) ION %
NC, 12 MLPsy=0.5 0.5866+0.0168 | 78.2%
Gaussian Processes 0.601 77.7%
Hierarchical Mixture of Experts 0.658 75.5%
Simple ensemble, 12 MLPs | 0.7692+0.0154) | 71.4%

Table 1: Comparing NC to other state-of-the-art learning techniques drotifedata.

To further empirically verify NC, we now compare it to two other popular emtsle techniques,
Adaboost.R2 and bagging. Figures 19 to 22 show results, again followergntipirical procedures
described in section 5 - all Boosted and Bagged networks were trainedavithstopping. We note
that on the Friedman data, NC significantly outperforms both boosting andnigagiicreasing its
lead as the ensemble size is increased. The Boston data shows that N@@islylwot a panacea
technique - boosting and bagging significantly outperform it in this situaticmmBhis and previous
experiments with NC, we hypothesize that the noisy nature of the Friedmais dd¢ally suited to
the flexibility allowed by NC’sy parameter, explicitly varying thit of the ensemble modtd the
data as needed, whereas boosting and bagging do not have this exfpafameter. We note that a
full empirical benchmarking of NC and its behaviour with noisy data is undgraut outside the
scope of this article.
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6.2 Using NC with an Ensemble of RBF Networks

We now briefly illustrate that NC can be applied to regression estimators af fythes, not just
multi-layer perceptrons. We use an ensemble of Radial Basis Functionrkefwsing Gaussian
basis functions. Centres and widths are initialised randomly, then a fullegitadescent is per-
formed on all parameters, using the NC penalty framework as previoustyided. Table 2 shows
that an ensemble of RBF networks each with 50 centres can outperfomiBrensemble each
with 50 sigmoidal hidden nodes, and applying NC to the RBF ensemble allothefgrain. Finally

in figure 23 we see the effect of varyirgon both the MLP and RBF ensemble. As previously
observed, with very complex individuals NC cannot provide furthesrareduction. Here we note
two points. Firstly, though an MLP ensemble cannot benefit, an RBF ensefrthkesame sizean
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benefitfrom NC. Secondly, and most importantly, we see it again obeys our peddipper bound
ony.

System Testing MSE (conf}
RBF: 5 x 50 basis functions, N¢= 0.5 | 0.0229+0.001)
RBF: 5 x 50 basis functions 0.0263+0.001)
MLP: 5 x 50 hidden nodes, N¢=0.5 | 0.0313+0.001)
MLP: 5 x 50 hidden nodes 0.0319+0.001)

Table 2: Using NC with an ensemble of RBF networks on the Boston data set
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Figure 23: LogP data: The effect of varying the N@arameter on
an RBF and MLP ensemble of si#é = 5, noting that
our predicted upper boung,pper = 0.78125 holds for
the RBF ensemble.

7. Conclusions

We have investigated the issue of how to explicittanagethe correlations in an ensemble of re-
gression estimators. We made important observations on the relationshigebahg Ambiguity
decomposition (Krogh and Vedelshy (1995)) and the bias-variancademce decomposition (Ueda
and Nakano (1996)). From this base, we provided a thorough critiguegative correlation (NC)
learning (Liu (1998)), a technique that extended from Rosen (128%),developed in the evolu-
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tionary computation literature. We showed that using a penalty term andoieetfiNCexplicitly
includes the covariance portion of the ensemble MSE in its error funciiais article has served
to illustrate that NC is not merely a heuristic technique, fondamentallytied to the dynamics of
training an ensemble system with the mean squared error function. Theatmes we made are
in fact all properties of the mean squared error functidiC is therefore best viewed asrame-
workrather than as an algorithm. The NC framework can be applied to ensembleg wdnlinear
regression estimatorombined in an ensembleof the form

_ M
f(x)= %Zl fi (). (41)

In addition, an upper bound on the strength parameter was shown to ajppilyeach estimatdg

is of the form
K

fi (X) = kz Wki(gd(x). (42)
=1

Examples of estimators in this class are multi-layer perceptrons with linear cuidas, and
Radial Basis Function networks, indeed any estimator that can be castireeatised linear regres-
sion framework. To derive the bound, we observed that positiveitiafess of the Hessian matrix
can be determined by checking just the fiksteading diagonal elements. We verified this bound
empirically, and although the bound is tight for larger ensembles, it remaise foo sizeM < 10,
and a useful empirical bound g= % seems to apply. These results seem to suggest a general
set of guidelines for application of the NC framework. The common trendtaase increasing
utility of NC with larger ensembles of relatively low individual complexity, with optimy tend-
ing to 05. We therefore recommend a starting point as: ensemblévsizel0, number of hidden
nodes between 2 and 5, and a penalty strength parameter 0. This will of course be problem
dependent, most significantly the number of hidden nodes—what is 'low leaityp for one task
will not be for another—but we believe it does provide good generialgnee. In addition, it seems
sensible from our investigations that some sort of annealing of the paradweieg the learning
process, from zero up towards the bound, may show further perfmerzenefits.

We then engaged in a detailed study of the error gradient and how it ehavitgen using NC
learning. We showed that the error of an NC learning ensemble can kerbdmwn into four
components, each with its own interpretation with respect to the current $tite ensemble.
Further to this we noted that NC allows a smooth transition of the error gradiiet®en that of a
fully parallel ensemble system and a single estimator. This raises a point natthie ofoverfitting
in ensembles. It is well known that overfitting of the individual estimatorskmbeneficial in an
ensemble system (Sollich and Krogh (1996)), but obviously overfittingmiiee ensemble as a unit
is an undesirable prospect. With this new information aboutWtshould we overfit?

Appendix A. Calculations Supporting the Strength Paramete Bound

We now present additional calculations supporting the work on the uppardofor theA and
y parameters, as in Section 4.3. Assuming an estimator which is a linear combinfttreo
functionsq, we wish to derive one of the entries in the leading diagonal of the Hessiix nfdhe
diagonal element corresponding to it weight in theith estimator isa?,%. If this is zero or less,
then the Hessian is guaranteed to be non-positive definite, an undegiragiect. Making use of
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the product rule, we have

de aj of
ani N ofi ani
0% B [6 a_a] of {6 afi}a_a
ani2 OWg;i 0 i ] Owyg; OWgi OWgi ofi
Taking the first term on the right hand side,
0 de 1
aTqia—fi = @i — M@y M(qu)
1
= <1_}‘(1_M)>(pqi-

Now for the second term, remembering eq (42), we have

of
ani N !

0 ofi _ Pk _,

ani ani aniZ '

Therefore we simply have

d%e

- [ e 42

oe,

- (1—2\(1— %))q}qiz.

It is interesting to observe that since we have

de
af;
d%e
af2

then we can see

d%e
an|2

(fi—t)—=A(fi—f)

e,
af2 i

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

This demonstrates that, sinq:@2 is positive, the sign of the leading diagonal enﬁé‘% in the

Hessian is decided by the signﬁ%.
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Appendix B. The Relationship between Ambiguity and Covariane

We now show the exact link between the Ambiguity decomposition and the hieswwa-covariance
decomposition. The bias-variance-covariance decomposition gives us

E{(f_—t)z}:bi—asz—i-%v_ar-l- (1—$>War. (52)

Now using the Ambiguity decompaosition, we have the result

E( 3 (2~ o3 (fi— 7)) =bias’ + var + (1‘$>m ©9

It would be interesting to understand what portions of the bias-variaoeariance decomposi-
tion correspond to the ambiguity term. We placeoaim front of the Ambiguity term, then derive
the relationship between the left and right sides of equation (53). Wetega appears in the
derivation will indicate how the Ambiguity term plays a role in the bias-variatmeariance de-
composition. We have

1 —

e = E{ S [(1-02-a(i~ 17}
_ %Z[E{(fi—E{f_}vLE{f_}—t)z—( ~E{f} +E{f} - _)H

now multiply out the brackets, thus

€ens = %Z [E{(fi —E{f})?+ (E{f} —t)?+2(f —E{f})(E{f} —1)
—a(fi - E{f)? - a(E{f) - 1)” - 20(f - E{T)(E(T) - D) ]

and evaluate the expectation and summation, giving us

Cons = MZE{ ~E{T}? )+ (B(f} -1)?
~ay S E{ (- E(7)2) - aB{(F-E()2) - 20E{(F- E(T)ELT) - D)}
and finally by rearranging the last term we obtain
s = 1 S E{ (i~ ELTH2} + (E(T) -1
—O(—ZE{ —E{})?} +aE{(T-E{f}?}.

Obviously now if we remove tha term that we have been using, this would simplify to give
us the squared bias of plus the variance of : which we could then break down further using the
bias-variance-covariance decomposition as we showed earlier. Thestimig part here though, is
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the term that would cancel out. The expected value of the Ambiguity term & emwhatever parts
of this that contain the term. Therefore,

B S0 17 = SE - BT - E(f))

= Q-—var(f).

And the other side of the Ambiguity decomposition, the expected value of thagevandividual
error is whatever partdo notcontaina, this is

B S0 = SE{-EL7 ]+ e 02
— Q+biag(f)2

This interaction termQ, is present in both sides, and cancels out to allow the normal bias-
variance decomposition of ensemble error. But what doeear? If we examine it a little further,
we see

SE((-E{)Y) = =3 E((hi-E{f} +E(f)} —E(T)?)

Zl-

= S YE(-E()?)+ o 3 (E() -E{)2

where we have used that f;E{f;}} = E{f;}2and alscE{ f;E{f}} = E{f;}E{f}. This shows
that the interaction termg, is the average variance of the estimators, plus the average squared
deviation of the expectations of the individuals from the expectation of tbereble.

Appendix C. Further Gradient Analysis of NC Learning

We have seen that the MSE of an ensemble system can be interpreted in yaofingtly with

the Ambiguity decomposition, and secondly with the bias-variance-covar@dgamomposition. We
now present a third way to understand the dynamics of a regressiomiglesén reference to the
gradient of the error function. Regard the architecture in figure 24s i8han ensemble of three

Figure 24: A typical ensemble architecture

1645



BROWN, WYATT AND TINO

MLPs, with three inputs and three hidden nodes each, using a uniformihtedigombination as
the ensemble output. We desire to update the weigfitmarked in bold—this is one of the output
layer weights for theth network (connected to thggh hidden node). If we consider the ensemble
as a single entity, then the error of this system at a single point is defined as
1= 02
€ens= E(f —t)°. (54)

In this case, an update to the weigh would involve the gradient

O€ens O€ens Of;

OWgi ofi owy;
1 - ofi
= —(f—-d)—.
M( d)awqi (55)

Note that we are assuming an ensemble of networks with linear output fusietidthis is the case,
the second term in the above error gradi%%s?e evaluates to simply the output of the relevant hidden

node. The error gradient is therefore proportlonal’—ﬁ§ and we can simplify our calculations
below by omitting the reference to the hidden node since it just acts as a statimmgpnent.

We calculated (55) in one simple step using the chain rule, treating the ensesrilsirggle
unit—if we perform this instead starting from the decomposed form of thereble error, it high-
lights more interesting results. We use the Ambiguity decomposition, and additidmati the
error into two components, where the first term concerns estimaamd the second concerns all
the other estimatorg+ i,

(102 501 772, (56)

If we do this we discover that the gradient of the ensemble error functeats of four distinct
components, shown and described in table 3. Each of these componetniisutes to the gradient
of the ensemble error in eq. (55). If we take ghean the outside and label the components, we can
make an interesting observation.

Rl
e k| (fi-t) -(i-D |v| (fi— 1) M;f—f
A B C

We now see that the gradient of the individual, and the gradient of tleerdsle as a single unit, can
be expressed as combinations of these components; thus we have

(57)

oe

ar = (im0 =A (58)
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Component

Interpretation

This is the component of the error gradient due to the difference

between the ith network output and the desired output (due to the
fact thatf; is changing.)

This is the component of the error gradient due to the difference
betweenf; and f (due to the fact that; is changing.)

This is the component of the error gradient due to the differgnce
betweenf; and f (due to the fact thaf changes, becausk is
changing.)

This is the component of the error gradient due to the differences
between the;s andf (due to the fact thaf changes, becaudeis
changing.)

Table 3: Ensemble gradient components

aeens _ 1 r _ 1
ot = w(f-0=4A-B).

(59)

Furthermore, a simple rearrangement now shows the error gradieftifican ensemble using NC
is
Ol e 2 e 2] — (f 1. 8
a_fi E(fl_t) - (fl f) - (f, t) 2y(1 M)(fl f)
_ 1 _
= (fi—t)=2y|(fi—f)— —(fi— 1)

M
— A-2y(B-C).

(60)

Alternatively, because we knodv= 2y(1— ﬁ), this can also be expressedfas AB. From all this
we can understand, a single framework, the relationships between minimisisgrthle ensemble
error, the NC ensemble error, and a single network, described in table 4.

If we setA = 1, or equivalentlyy = % we see that the gradient of the individual error with
NC is directly proportional to the gradient for the ensemble seen as a sintgle iee.

10e

O€ens

(61)

An alternative way of thinking about this is that all the minima are in the same losatoon the
landscape i#M times shallower—the effect of which could be duplicated with a smaller learning
rate in the update rule. When we changeithin a certain range, we scale smoothly between the
gradient of a single large entity, and that of a set of independently traietdrks. The choice
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Algorithm _Components in error gradient for network
i

Simple Ensemble A

Ensemble with NC A—2y(B—C)or (A—AB)

Ensemble with NCA =1 A—B

or equivalentlyy = %

Single large network & (A—B)

(with fixed output layer weights)

Table 4: Components of the Ensemble Error Gradient under differeiotrittigns

3
I

[t J;

Figure 25: An regression example to illustrate how NC affects the errdiegra

of y is problem-dependent, and it emerges that we can also understaogitimal setting of the
parameter in this gradient-based context—consider the scenario in figure 2

On a single datapoint, the netwofkis estimating too high at.8, which is right of the target
t = 4. We have an ensemble bf = 5 networks, but for clarity the outputs of the other ensemble
members are not shown; the resulting ensemble outputds3, too low, left of the target. When
updating the value of;, a simple ensemble will use the gradient measurertigntt) = 4, resulting
in fi being shifted left, towards the target. However, this will cause the ensermbpeitd to
also shiftleft, moving away from the target An ensemble using NC will include three gradient
components,

A-2yB-C) = (fi—t)—ZV[(fi—r)—$(fi—f_) (62)
= 4-2(5-5)
— 448

If we choosey = 0.4, this sum evaluates to.& still a positive gradient foff;, meaning the
ensemble output will still be moved away from the target. If however wesdnpe 0.6, it evaluates
to —0.8, giving a pressure for the netwofkto moveawayfrom the target, causing the ensemble
output to movecloserto the target. The setting of thyevalue provides a way of finding a trade-off
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between these gradient components that will cause the ensemble EthmDve toward the target
valuet. This is obviously a purely hypothetical situation, and finding the optintiaat allows this
correct trade-off will be more difficult.
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